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ABSTRACT

Accelerated life testing of a product under more severe

than normal conditions is commonly used to reduce test time

and costs. Data collected at such accelerated conditions are

used to obtain estimates of the parameters of a stress transla-

tion function. This function is then used to make inference

about the product's life under normal operating conditions.

We consider the problem of accelerated life tests when

the product of interest is a p component series system. Each

of the components is assumed to have an independent Weibull

time to failure distribution with different shape parameters

and different scale parameters which are increasing functions
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of the stress. A general model is used for the scale parameter

which includes the standard engineering models as special

cases. This model also has an appealing biological interpreta-

tion.

Maximum likelihood estimators of the component parameters

are obtained for type I, type II, and progressive censoring.

These estimators are used to obtain estimators of the probab-

ility of component and system survival under normal operating

conditions. This method is illustrated by an example.

1. INTRODUCTION

Accelerated life testing of a product is often used to

obtain information on its performance under normal use condi-

tions. Such testing involves subjecting test items to condi-

tions more severe than encountered in the item's everyday use.

This results in decreasing the item's mean life and leads to

shorter test times and reduced experimental costs. In engi-

neering applications accelerated conditions are produced by

testing items at higher than normal temperature, voltage,

pressure, load, etc. In biological applications accelerated

conditions arise when large doses of a chemical or radiological

agent are given. In both cases the data collected at the high

stresses is used to extrapolate to some low stress level where

testing is not feasible.

Several authors have considered the problem of analyzing

accelerated life tests when the product has only a single mode

of failure. Nelson (1974a) has a bibliography of applications

and analysis of each tests. Mann, Schafer, and Singpurwalla

(1974) derive least squares and maximum likelihood estimators

of model parameters when the underlying failure distribution is

exponential. Nelson (1972c) describes a graphical solution to

this problem.



Nelson (1970) derives graphical, maximum likelihood and

least squares estimators of model parameters when the under-

lying distribution is Weibull. Meeker and Nelson (1974a and

1974b) derive maximum likelihood estimators of the model para-

meters in the Weibull case when the data is type I or type II

censored. They also discuss the optimal strategy for designing

such tests. Mann (1972) has also discussed optimal design

strategy. Tolerance bounds for the Weibull model are discussed

in Mann (1978).

Several papers have been written on analyzing accelerated

life tests when the failure distribution is normal or log

normal. In a series of papers Nelson (1971, 1972a and 1972b)

has considered maximum likelihood, least squares, and graphical

estimation procedures for an Arrhenius model when all failure

times are known. For this model it is assumed that mean of the

log failure time is linear in the stress, and that the variance

is independent of the stress. Nelson and Hahn (1972, 1973)

derive best linear unbiased estimators of the regression para-

meters of this model for type II censored samples. Kielpinski

and Nelson (1975) discuss maximum likelihood estimation pro-

cedures for this model when the sample is type I censored.

Several papers have been written on analyzing accelerated

life tests when more than one failure mode is present. Here

failures can occur from any one of k independent causes. Sam-

ple information consists of a failure time for each item and

the cause of failure. Assuming that for a given stress V each

failure mode follows an independent log normal distribution

with parameters Vi(V) = ai + $j V, and constant with

respect to V, i = 1, ..., k, Nelson (1973) obtains graphical

estimates of a, and Si when there is no censoring. For

this model, Nelson (1974b) obtains maximum likelihood esti-

mates of i, Bj and 0,2.



Klein and Basu (1980a) have considered the above problem

when the component lifetimes are exponentially distributed and

the data is type I, type II or progressively censored. Klein

and Basu (1980b) have described the analysis of accelerated life

tests of series systems when the component failure times follow

a Weibull distribution with common shape parameter. The object

of this paper is to consider the case when the shape parameters

are different.

In section 2 we present the model to be used for acceler-

ated life tests in the competing risks framework. In secti6n

3 we use this model to analyze accelerated life tests where

there are competing causes of failure and the data is type I,

type II, or progressively censored. Finally, in section 4 an

example is presented.

2. THE MODEL

The problem considered in the sequel is as follows. Consi-

der a p component system with component lifetimes XI, X2, ..., Xp.

Suppose that under normal stress conditions these components have

long lifetimes making testing at such conditions unfeasible. To

reduce test time and cost, s stresses, Vl, ..., Vs are selected

and a life test is conducted at constant application of the

selected stress. We wish to use this information to make infer-

ence about the component lifetimes under normal stress conditions.

Consider the following model introduced by Klein and Basu

(1980b) elsewhere.

At a stress Vi  i = 1, ... , s assume that the j component

has a hazard rate given by

hj(x, Vi; S, 0.) = g3 (x, a.)Xj(V. 0 (2.1)

I =,...,s j= l,...,p.

For gj(x, Sj) a Weibull form is assumed, that is



I

aj-
gj(x, aj) = cjt , > 0, t > 0. (2.2)

The a.'s may vary from component to component to allow for dif-

ferences in component reliability.
For x,(V, 9j) we assume a model of the form

k.

A (V, @j) = exp ( ' 6j j(V) . (2.3)
J~ -0

where eOo(V) = 1 and eil(V)..., jk (V) are kj non-decreasing

functions of V. The e.(.)'s may differ from one component to

another.

This model includes the standard models, namely, the power

rule with X.(V, .)=.V J1 ; the Arrhenius reaction rate model

with Xj(V, 8j) = exp(sjO - 8j,/V); and the Eyring model for a

single stress with Xj(V, EP_) = V 1 exp(aj0 - aj2/V) as special

cases.

The model also can be derived from the interpretation of

the effects of a carcinogen on a cell as proposed by Armitage

and Doll (1961). For details see Klein and Basu (1980b). To

produce cancer in a single cell, k independent events must

occur. The effect of an increased dose of a carcinogen is to

increase the rate at which these k events occur. If, for the

Sth disease, this increase is of the form exp(aj ej,(V)) for

= 1, ..., k. the model (2.3) is obtained. If this increase
is assumed linear the model of Hartley and Sielkin (1977) is

obtained. Thus the model of Hartley and Sielkin is a first

order Taylor Series approximation to (2.3) when ej,(V) = V for
1 , ..., k J,

Consider an accelerated life test conducted at constant

applications of s stress level, VP, ..., Vs. Let Xil, X12,

X denote the component lifetimes of the p component

!i



series system put on test at stress Vi. Assume that the compo-

nent lifetimes are independent. We are not allowed to observe

Xil ... ,Xip directly but, instead, we observe Yi

minimum(Xil, ..., Xip) and an indicator variable which describes

which of the p components is the minimum. We shall use the

method of maximum likelihood to estimate aj and P=

(BjO, ..., Ijk ), i = 1, ..., p for various censoring schemes.

3. ESTIMATION OF PARAMETERS

3.1 Type I censoring

For this censoring scheme ni items are put on test at

stress Vi , i = 1, ..., s. The Ith system on test at stress Vi
is tested until it fails or until some fixed time Ti. at which
it is removed from the study. The riz's may very from item to

item to allow for staggered entry into the study. Let ri be the

number of systems which fail prior to their censoring time at

stress Vi. Let rij denote the number of these whose failure was

caused by failure of the jth component. Let X ij denote the

failure time of the rij systems whose failure is due to failure

of component j. For convenience let YU., i = s, ... ,

k= , ... , ri denote the failure times of the ri systems

regardless of the cause of failure.

The overall log likelihood can be written as

p
£nL = z £nLj (3.1.1)

j=l

where

s k rij

InLi = ij( Ojtejt(Vi ) ) + rijnj + (aj-l) l nxlj t

k

-pI ) j 1, P., p (3.1.2)



where
ri Yj ni ri

Ti (aj) Z Yi + _ 1_ j, i 1, ... , s (3.1.3)

with -rjh, i = 1, ... , s, £ = 1, ... , ni-r i the censoring times

of the ni-r i systems removed from the accelerated life test.

When all items on test at stress VI have a common censoring

ri  (
time, Ti., then TI(9j) = J + (ni-ri)ti"

£ =1

The likelihood equations, which must be solved numerically

for the maximum likelihood estimators, aj ajO, ajl' ""' kj,

are:

0= =

srij k.

il + t=lJnXii, (- .T l)(aj)exp( B jtj(V ))

j =1, ...,9 p (3.1.4)

where

r. ni'ri Cc
: ~ ~T 1)(aj) = 1 a. yRnYi + I -rf hnT ,I=I .,S

t~ 1 9. it iLt, S

(3.1.5)

and

0 = =---u i[I rijeju(Vi) " Ti(cj)eju(Vi)exp (I a ej~ (Vi))

6ju ii J = z P

J=,..., p u 0, ..., k (3.1.6)

........... ... ..... . ii l l J



The second partial derivatives of the log likelihood are

62tL. s r..

ItI

.= _ ijT , 1 , ..., p. (3.1.7)

r i a.

T(2) (aj) ,IY in~;) 2 +

tk= 1ni-r i .

TiJ(1nTi ) p = 0, ... , p, (3.1.9)

62ZnL = S-~~~ ~ e.jBj ij (Vi)T01)(tj)

6 i 0iw 3 ij .j I I

j ,...,p u =0,..., k (3.1.9)
and

62RnLj S
16ju~jw t=Z XijTi (a )Ojw(V)ju()

w = 1, ..., kj u =  0, ..., kj. (3.1.10)

To find the information matrix let

S1 if Yi < Ti' i = 1, , s, P- 1 , ...

it

0 otherwise (3.1.11)

and define

P {Pni = _( i j i-)= P(Cit 1) = 1 exp ( jZI=  .)

i c Id ... t a = I , n s (3.1.12)
The conditional density function of Yi. given Cit 1 is



fi= "- =1 exp ( - >ij y  ) ' Y < "i
i nit ~

0 otherwise. (3.1.13)

Now
n.E(Ti( j) P E ( ik, Cit + 1I=10 Cij)T it

*.I aL -1 4y j  m im exp -m i m  dy

mF +': ni c J exp Tanm'i°

1 t m=l ImI

i= I, ... , p j = 1, ..., s. (3.1.14)

where the integral must be evaluated numerically. Similarly,

a--i,;~o> p

i m~Y amxi mY ) exp(- i  dy.J-, =ImM l m=l

n + £[ T J( Zn -i )exp ( im Ti ) 'm (3.1.15)
and

and



I=
I E(T(2)(a=)

ni a-Ip

=10 m=l m=l

+ I .ti(nti )2exp( aml
it1 m=l fk

i = 1, ... , s j = 1, ... , p. (3.1.16)

Now the probability that the Lth system fails prior to time Til

due to failure of cause j at stress i for i = 1, ... , s,
I =,.., P, X = I , . .. , ni is

*Piji = Xijua exp Ximum) du (3.1.17)

which must be evaluated numerically. Hence

n.E~1  ) .1 ~' (3.1.18)E(rij) = I ij"

The asymptotic covariance matrix can now be obtained by

using (3.1.18), (3.1.16), (3.1.15), and (3.1.14) to calculate

the expected values of (3.1.7), (3.1.9), and (3.1.10). AnP.

estimator of this matrix can be obtained by substituting a.3, and

ij in the appropriate expressions.

3.2 Type I, censoring.

For this censoring scheme ni systems are put on test at each

of the s stress levels and testing continues until a preassigned

number ri have failed at which time testing is stopped. Suppose

that rij systems fail due to failure of the jth component,
j = p. Let Xij I  ... , Xijri j denote the failure time

of those rij systems at stress Vi whose failure was caused by



failure of the jth component, i = 1, ... , s, j = 1, ..., pt

= 1, ... , ri. Let YY(1). ""' 1(r) denote the ordered

failure times of the ri systems observed to fail at stress i,

regardless of the mode of failure.

One can show that the likelihood of interest is given by

(3.1.1) and (3.1.2) witli
r i Ci a.

Ti(aj) = 1I Yi (1) + (ni - ri)Yilri)'

i , ... , s j = 1, ..., p. (3.2.1)

The likelihood equations are given by (3.1.4) and (3,1,5) with

ri c. a.

T~l)=(aj) Y 9t1 Y )nYi(,) + (ni - ri)Yitri nYi(r),

1 = 1, ... , s j = 1, ..., p. (3.2.2)

The matrix of second partial derivatives is given by (3.1.7) to

(3.1.9) with

ri .J (On+inr .) 2j
= in - i(ri)(1nYi(ri))'

j=1, ..., p i = i, ..., s. (3.2.3)

To find the information matrix note that the density of
Y i(P.) is

f(yi (j)) -

- l)n - 1  1 - exp C L

(t t)! jl2 1 ijajYil-) ijy o)]p~,

exp -(n- +
j=l ij i(k) ,-Y (1) < '

J& , .. ,n t i z: 1, .. ,s. (3.2.4)



Hence, E(T j( j))

=I f Y )f(Y())dYi(g) +

(ni - ri) I Yiiri)f(Yi(ri))dYi(ri)' (3.2.5)

r i .0 a.

E(T I)(aJ)) I Y i)2nYIi)f(Yi(i))dYi()

+ (ni - ri) f )9nYi(ri)f(Yi(ri))dyi(ri) (3.2.6)
E(I2(1) * 1 6 Yi(1 )(Yi(j)f(Yi())dYi()

E(T(2 )(ai)

+ (nI - ri) Ylir )(tnYi(rl)) 2f(Yi(ri))dYi(ri) '

i = 1, ... , s j = 1, ..., p. (3.2.7)

These integrals must be evaluated numerically. Now with ri

fixed, (ril, ..., rip) has a multinomial distribution with

parameters Hij given

nij f OD Xijaju alexp ( - k=li uk) du, (3.2.8)
0

so

E(ri) = rllij.

The information matrix can be obtained by using (3.2.5),

(3.2.6), (3.2.7), and (3.2.8) to calculate the expected values

of (3.1.7), (3.1.9), and (3.2.10). An estimate of this matrix
A A

can be obtained by substituting c i and Bj in the appropriate

expressions.



3.3 Progressive censoring

For this censoring scheme N1 items are put on test at the
ith stress level. Let TII, Ii be fixed censoring times

1
at which a fixed numer of items, Cil, ..., CiM are removed from

the test. At time TiM i either a fixed number CiM i items are

removed from the test or testing is terminated with a random

number, CiM i, systems still functioning. Assume that Ni is

sufficiently large to allow removal of the required number of

items.
M i

Let n. = N.- ! Cik be the number of items which are
k I

observed to fail and let Y it, k = 1, ..., ni denote their failure

times. That is, Yil' "" Yin. are the ni system failure times
1

regardless of the mode of failure. Suppose that r.. of the ni
failures were caused by failure of the jth component, and the

respective failure times are P .. Xjrij 1 = 1,

j = I, ..., p.

The likelihood function of interest is given by (3.1.1)

which can be factored into component likelihoods as in (3.1.2)

with
n i a. Mi.

Ti(aj) I Y + , = 1, ... , p, 1 = 1, ... , s.
a tl i

The.likelihood equations are as in (3.1.4), (3.1.5) with

ni .. Mi 01i

T I)(2j) =I Y JtnY1 . + =l ci2 n(T1l)
i LI it it i1 Cit

j = i, ... , p i = 1, ..., s. (3.3.2)

The matrix of second partial derivatives are as in (3.1.6),



(3.1.7), and (3.1.9) with

T(2)(n i  (IM
i  ( n&

I ~ ~ 2 t(jYi~ nYi 2,) 2 + Ti 1 (flnT it) 2Ci

j = , . . , p I = , . . , S . ( 3 . 3 . 3 )

To calculate E(Ti(aj)), E(T(l)(aj)) and E(T(2 )(aj))

consider any of the s stress levels. The ni observed failures,

Yik, have the following survival function

TFi(y) = exp - (ja ) y >0, i = 1, ... , s. (3.3.4)
j=l '

Let fit denote the number of failures in the interval

[Ti, 2 , -] .E2l)' 2 = 1, ... , Mi + 1 where Tim.+l = Define
Tit = Fi(Tit) and Fi = 1 - F2, and let U k = ... , f

denote the failure times of the fit items which fail in this

interval.

Cohen (1963) shows that

NFi. " for I = 1
E(fid) 1 C.-

(N - Il (- k  )(F i g - Fi.l) for2,= 1,..., 1 + I
k=l Fik (3.3.5)

if cMi is fixed and for k= , ..., Mi if ciMi is random

Now

fi O fi CL

E (X UI) J EE U J it
ku l)k=l uilkf 2

= E(fik)E(UtiklTt < Uik <'it)

= E(ft2 ).
S .



I Itu°( I a ) exp (- A iqu  ) du/(Fit - Fiti)

•ri 1 q q=l q

fort t=, ..., Mi  (3.3.6)

where E(fi ) is given in (3.3.5) and the integral must be

evaluated numerically, with similar expressions for

ftfa j it a.
itk iUk) and E ( UikJInUk' )  Using these

kil kl k

expressions when a fixed number of items are removed at time

Tim I we have

E(Ti (oQ)) = Ni Jf G ak Xiju k-l ) exp (- uk
0 k =1 k I

M li 00 01J kxik u k-I

- c1 fu~ k F.

,=l ~t Tii

exp (- cik) du + ci T.a , (3.3.7)
kil 1 =i ti

E(T(l)(aj)) =N i u Jnu a iku
0 k=l

exp - klik u ) du + Jk=l c ki ikn )

S CIt f u tj nu ( akAikuk ) exp- k Aku ) du

(3.3.8)



and

E(TM2 (cz))

N u cJ(knu )2 (k~cINk-1) exp ~ ~ k)duN1 ~ k NI cn k I

- -! f uai(tnu)2 V~
I i t1  Tit k=l

exp ()A 4 u du + iJ fTi~

1=1 .. , j19 ... ,9p. (3.3.9)

When all testing stops at time Tim there are

CM = N1 - i f - i V items removed from test. Thus

I t-Ilc it

E(rN)=rim (N - I )
1 1 =1 F.t

And, here,

0~ kU)

exp ( duur Im
M1 -l a ti 2

m-Ic~ itM T (m i ckA ikuc k) exp Xi k ul lk) du
-t*1U kz k=l



N1-1 ct 1 M1-M

Ctk1 Cit T TIN, (3.3.10)
k II

E(TO)1 (cxj))

N1 f i u a tnu k kXikU k-i1) exp( - Aikuk) du
0 k~lk=l

+ Fi TIM. RIN. -m .2.& {j u i tnu a,,A.L ik
i i k-I it Tit l

A N1-1
*exp X - ik k) i + r im tlT 1i M + ci ikTi

1~ 1 t=

(3.3.11)
and

E(T(2(aj =

IN 1 i U aJ(tiu )2 aklkxik u k-1)~ exp (- k k u k) du

+T 11 I(flI)2) - IN IN (~lIN )2

+ I' mi(ni i TMiii Ikn i

+fT ucl(tnu )2 ( k X k kalk- ) exp INk uk ) du IT it k=l 1~

+ i- O i i(tnTtt2 
(3.3.12)

Also when ciN4 is random, ni is a random variable with mean



M ' i- .F i  " Fim i.]( . .

E(n1 ) -NFi - (3.3 F.11

Substituting these expectations in the appropriate places in

equations (3.1.7) to (3.1.10) yields the asymptotic covariance
AA

matrix of (Bjos ... , Ojk, a) for this censoring scheme.

3.4 Estimation of Parameters at the Usage Stress

Let I ... * be the maximum likelihood estimators

of aj, Ojos ...,9 jk , j = 1, ..., p obtained from an accelerated

life test as describ~d in section 3.1 to 3.3. Let Yj denote the

covariance matrix of (BjO. .""' Bjkj' c). Recall j s of the

form

for 10(1j) 0,) (3.4.1)J= T C12

(1j CL) /~
where I(J~j) is the covariance matrix of (Oo OO" jk' I(Jc)

is the vector of covariances between aj and (BjO' ""' Bik)
A

Ojos ... ) 8 and a2 is the variance of aj. Let Yj be an

estimator of Ij. Let Vu denote the design stress of the system.

For sufficiently large sample sizes the vector
AA A

^ .j)is approximately normal with mean vector

(O ... , 1jk cij)and covarlance matrix 1j. Following

Thomas, Bain and Antle (1969) we recommend sample sizes of at

least a hundred at each stress level.

At stress V the maximum likelihood estimator of the scale

parameter of the jth components time to failure distribution,

Aju, is



kj

ju exp ( JV) j = 1, ..t p. (3.4.2)

For sufficiently large sample sizes AJu has a log normal distri-
bution with mean Aju and variance 2 given by

u = ( , (Vu),..., jkj(Vu))Ijj(1, 'jl(Vu),...ejkj(VU)) T

(3.4.3)

Hence a reduced biased estimator of Xju is

= u exp(-G u/2), j = 1, ... , p (3.4.4)

where a2  is obtained by replacing jj bI in (3.4.3). If
w2 in ( I

Yjj were known the mean squared error of Xju is Xju(exp(aiu)-I )

which is always smaller than X (exp(2aM )-2 exp(a )+I), the
A JU JU JU

mean squared error of X ju An asymptotic (1 - a) x 100% confi-
dence interval for Xju is given by

(kjueXp(-Zla/2aju), Xjuexp(Zl-a/2oju)), j = 1, ... , p. (3.4.4)

The maximum likelihood estimator of the jth components
cumulative hazard rate at stress Vu and time t, AJU(t) is given

by
A 

AlA ju(t) = t ju' j = 1, ... , p, t > 0. (3.4.5)

This estimator is also biased. An asymptotically unbiased
estimator of Aju(t) is

Aju(t) = Au(t)exp(- a(t)/2). j = 1, ... , p, t > 0
(3.4.6)

where

9 (t) = (1, el(Vu), Ojk (VU), nt)
fj(, e .nt) (3.4.7)

f l. j(Vu). ... 9 ejk (Vu) tt



This estimator also has smaller mean squared error than Aju(t).

Asymptotic (I - a) x 100% confidence intervals for A~t) are
Ju

given by

(Aju(t)exp(-Zl-a/2oj(t)), A ju(t)exp(Zl_,/2oj(t)),

j = ... , p t > 0. (3.4.8)

The maximum likelihood estimator of the j th components

survival function at time t and stress Vu is given by

T. (t) = exp(-Aiu(t)). j = I. ..., p (3.4.9)
ith

Approximate (I - a) x 100% confidence intervals for the jth

components survival function at time t and stress Vu are given

by
( utexp(Zl./ Mjt) A exp(-Z./2jt)

JU, i ult)

j = l, ... , p t > 0 (3.4.10)

Let K be a subset of 1, ..., p of cardinality k. We are

interested in obtaining estimators of

M = II Tr u(t). (3.4.11)uJEK J  t

the survival function of an item which can fail only from the

failure of components indexed by elements of K. When

K = {l, ..., p) then (3.4.1) is the overall system survival

function. When K is a proper subset of {l, ..., p) then (3.4.1)

represents the survival function of a system which has been

redesigned so that those components indexed by Kc are extremely

reliable. Clearly, the maximum likelihood estimator of uK)(t)

is

F(K)(t) j I Fj (t). (3.4.12)

An approximate (1 - a) x 100% confidence interval for Fu'(t) is

Ju



,expcjuY) exp(-cajUZ)
(.1 9XP(Ojuy (t) luY(3.4.13)

-c)1/k
where y = li 2 - . This is a conservative interval in the

following sense. From (3.4.10)

k ^ exp(Z ri (t0_() exp(-Z rU .(t))
(l-a) /k=P(Fiu Mt (t)<r (t) for jEK.

Since (t), T.,u(t)) are asymptotically independent for j.j',

^ exp(Zrc^j(t)L exp(-Zrac (t))
(l-)=P(Fju(t) - < F. (t)< (t) r M , for all jeK)

exp(Zrai(t)) (t)<P.l Fj(t) " <_u(t)<l l~ut1 "T
JCK j JEK j

3.5 Dependent Risks

In sections 3.1 - 3.4 it was assumed that the component

lifetimes were independent. This assumption may be relaxed by

considering a fatal shock model. For simplicity we shall

illustrate this model for the bivariate case.

Let U1 , U2, U12 be independent Weibull random variables

with shape parameters a,, a2, a12 and scale parameters

XI(V, _EI), X2 (V, 02), and I12(V, Bl2 ) in an environment charac-

terized by a constant application of a stress V. Here U1

represents the time until a shock destroys the first component

only, U2 the time until a shock destroys the second component,

and U12 the time until a shock destroys both components. If

(X1, X2 ) represent the component lifetimes then, clearly,

X, = min(UI , U12 ), and X2 = min(U2 , U12). The component sur-

vival functions are not Weibull, but are given by

T (t; V) = exp(-X (V, 8)t j - X12 (V, §1 2 )ta1 2 ,I

j= , 2 t > 0. (3.5.1)



An accelerated life test can be conducted as before where

now the parameters of interest are a,, a2, a12 , Al' ._2, E12"

The results of section 3.4 can be used to obtain estimators of

the component survival function under normal conditions.

4. EXAMPLE

As an example of these procedures we shall consider an

example given in Nelson (1974a). The problem is to analyze

an accelerated life test conducted on Class-H insulation

systems for electric motors. There are three possible types

of insulation failures corresponding to distinct parts of the

insulation system, namely Turn, Phase, and Ground. The failure

cause is determined by an engineering examination of the failed

motor.

The purpose of the experiment is to estimate the average

life of such insulation systems at a design temperature of

1800 C. A median life of 20,000 hours is necessary for the

satisfactory performance of these insulation systems. To reduce

test time and cost an accelerated life test was conducted at 4

accelerated temperatures, namely, 1900 C, 2200 C, 2400 C, and

2600 C.

The accelerated life test was conducted by putting 10

motors on test at each of the 4 stress levels. Motors were run

until they failed, then the cause of failure was found and

isolated and motors were run until a second failure occurred.

The results of this study are reported in Nelson (1974a). The

data followed a log10 normal distribution so the Weibull theory

results do not apply.

To illustrate the results of the previous section Nelson's

example is reproduced by simulating the life test using a

Welbull model with shape parameter 1 for each failure cause.

The shift parameters are chosen by fitting an Arrhenius Reaction

Rate model to the estimated component medians obtained by Nelson.

The model is
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Xi(V; 8j) = exp(8jO + sjlejl(V)), j = 1, 2, 3 (4.1)

where ejl(V) = -10OO/V for j = 1, 2, 3 and V is the temperature

in degrees absolute. The absolute temperature is 273.16 plus the

centigrade temperature. The values of (BjO, 8j), j= 1, 2, 3

are as follows:

Table 4.2 True Values of a0, a1

aO a1
Turn 8.2607 8.0106

Phase 3.7748 6.1253
Ground 13.0340 10.6487

Twenty Weibull observations were generated at each of the four

stress levels. The data are in Table 4.1.

A Newton-Raphson procedure was used to solve the likelihood

equations. The integrals in (3.1.14), (3.1.15), (3.1.16), and

(3.1.17) were evaluated using a repeated seven point Gauss-

Leguerre formula. The maximum likelihood estimates are as

follows:

A A A

TURN: a = 1.0099, B0 = 6.1363, 1 = 6.9390

PHASE: a = .9993, 0 = 3.5831, 61 = 6.0272
GROUND: a = 1.0395, 80 = 7.9788 B1 = 8.2679.

The estimated covariance matrices are:

(TRN2 9.82:: 5.3254 .1178)

5254 3.1306 .1283\.1178 .1283 .0188/

IPHASE = 175 11.6281 .2217\

1.281 6.6803 .2442)
A .2282 .2442 .0353!

IGROUND = 8.2378 9.8173 .1856

9.8173 5.6782 .2033

.1856 .2033 .0299/



Using these estimates, at a design stress of 180% the

estimates of the probability of component survival at a mission

time of 20,000 hours is .1020 for turn failures, .3023 for phase

failures, and .3574 for ground failures. 90% confidence intervals

for the probability of component survival at 20,000 hours and a

temperature of 1800 C are:

TURN - (.0187, .2701),

PHASE - (.0749, .5756),

GROUND - (.1191, .6080).

Using equations (3.4.12) and (3.4.13) the maximum likelihood

estimate and 90% confidence interval for system reliability at

20,000 hours and a temperature of 1800 C are .0110 and (.000027,

.1402). Similarly, a 90% confidence interval for a redesigned

system in which turn failures cannot occur is (.0043, .4024).

We note that the above confidence intervals are suspect due

to the relatively small sample sizes and are provided here to

only to illustrate this procedure.
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